Skip to content

Regional economic potential for recycling consumer waste electronics in the United States


  • Robinson, B. H. E-waste: an assessment of global production and environmental impacts. Sci. Total Environ. 408, 183–191 (2009).

    Article 
    CAS 

    Google Scholar 

  • Fiore, S., Ibanescu, D., Teodosiu, C. & Ronco, A. Improving waste electric and electronic equipment management at full-scale by using material flow analysis and life cycle assessment. Sci. Total Environ. 659, 928–939 (2019).

    Article 
    CAS 

    Google Scholar 

  • Forti, V., Balde, C. P., Kuehr, R. & Bel, G. The Global E-waste Monitor 2020: Quantities, Flows and the Circular Economy Potential (United Nations University, 2020).

  • Advancing Sustainable Materials Management: 2014 Fact Sheet (USEPA, 2016).

  • Awasthi, A. K., Li, J., Koh, L. & Ogunseitan, O. A. Circular economy and electronic waste. Nat. Electron. 2, 86–89 (2019).

    Article 

    Google Scholar 

  • Zabala, A. Illegal electronic waste recycling trends. Nat. Sustain. 2, 353–354 (2019).

    Article 

    Google Scholar 

  • Hsu, E., Barmak, K., West, A. C. & Park, A.-H. A. Advancements in the treatment and processing of electronic waste with sustainability: a review of metal extraction and recovery technologies. Green Chem. 21, 919–936 (2019).

    Article 
    CAS 

    Google Scholar 

  • Nithya, R., Sivasankari, C. & Thirunavukkarasu, A. Electronic waste generation, regulation and metal recovery: a review. Environ. Chem. Lett. 19, 1347–1368 (2021).

    Article 
    CAS 

    Google Scholar 

  • Sun, R. et al. Bioaccumulation of short chain chlorinated paraffins in a typical freshwater food web contaminated by e-waste in South China: bioaccumulation factors, tissue distribution, and trophic transfer. Environ. Pollut. 222, 165–174 (2017).

    Article 
    CAS 

    Google Scholar 

  • Kyere, V. N. et al. Contamination and health risk assessment of exposure to heavy metals in soils from informal e-waste recycling site in Ghana. Emerg. Sci. J. 2, 428–436 (2018).

    Article 

    Google Scholar 

  • Purushothaman, M., Inamdar, M. G. & Muthunarayanan, V. Socio-economic impact of the e-waste pollution in India. Mater. Today Proc. 37, 280–283 (2021).

    Article 

    Google Scholar 

  • Palmieri, R., Bonifazi, G. & Serranti, S. Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging. Waste Manage. (Oxf.) 34, 2120–2130 (2014).

    Article 
    CAS 

    Google Scholar 

  • Ghodrat, M., Rhamdhani, M. A., Brooks, G., Masood, S. & Corder, G. Techno economic analysis of electronic waste processing through black copper smelting route. J. Clean. Prod. 126, 178–190 (2016).

    Article 
    CAS 

    Google Scholar 

  • Diaz, L. A. & Lister, T. E. Economic evaluation of an electrochemical process for the recovery of metals from electronic waste. Waste Manage. (Oxf.) 74, 384–392 (2018).

    Article 
    CAS 

    Google Scholar 

  • Patil, T. A. & Patil, S. T. Techno-economic feasibility of recycling e-waste to recover precious metals. Int. J. Adv. Sci. Tech. Res 7, 214–225 (2015).

    Google Scholar 

  • Islam, M. T. & Huda, N. Material flow analysis (MFA) as a strategic tool in e-waste management: applications, trends and future directions. J. Environ. Manage. 244, 344–361 (2019).

    Article 

    Google Scholar 

  • De Meester, S., Nachtergaele, P., Debaveye, S., Vos, P. & Dewulf, J. Using material flow analysis and life cycle assessment in decision support: a case study on WEEE valorization in Belgium. Resour. Conserv. Recycl. 142, 1–9 (2019).

    Article 

    Google Scholar 

  • Islam, M. T. & Huda, N. E-waste in Australia: generation estimation and untapped material recovery and revenue potential. J. Clean. Prod. 237, 117787 (2019).

    Article 

    Google Scholar 

  • Electronic Products Generation and Recycling in the United States, 2013 and 2014, Office of Resource Conservation and Recovery (USEPA, 2016).

  • Duan, H., Miller, T. R., Gregory, J., Kirchain, R. & Linnell, J. Quantitative Characterization of Domestic and Transboundary Flows of Used Electronics: Analysis of Generation, Collection, and Export in the United States (the StEP Initiative, 2013).

  • Althaf, S., Babbitt, C. W. & Chen, R. The evolution of consumer electronic waste in the United States. J. Ind. Ecol. 25, 693–706 (2021).

    Article 

    Google Scholar 

  • Duman, G. M., Kongar, E. & Gupta, S. M. Estimation of electronic waste using optimized multivariate grey models. Waste Manage. (Oxf.) 95, 241–249 (2019).

    Article 

    Google Scholar 

  • Golev, A., Corder, G. D. & Rhamdhani, M. A. Estimating flows and metal recovery values of waste printed circuit boards in Australian e-waste. Miner. Eng. 137, 171–176 (2019).

    Article 
    CAS 

    Google Scholar 

  • Golev, A., Schmeda-Lopez, D. R., Smart, S. K., Corder, G. D. & McFarland, E. W. Where next on e-waste in Australia? Waste Manage. (Oxf.) 58, 348–358 (2016).

    Article 

    Google Scholar 

  • Babbitt, C. W., Madaka, H., Althaf, S., Kasulaitis, B. & Ryen, E. G. Disassembly-based bill of materials data for consumer electronic products. Sci. Data 7, 251 (2020).

    Article 

    Google Scholar 

  • Historical Population Change Data (1910–2020) (US Census Bureau, accessed 1 July 2021); https://www.census.gov/data/tables/time-series/dec/popchange-data-text.html

  • 2020 RECS Survey Data (US Energy Information Administration, accessed 4 July 2022); https://www.eia.gov/consumption/residential/data/2020/

  • 2018 CBECS Survey Data (US Energy Information Administration, accessed 1 July 2022); https://www.eia.gov/consumption/commercial/data/2018/index.php?view=microdata

  • Ghimire, H. & Ariya, P. A. E-wastes: bridging the knowledge gaps in global production budgets, composition, recycling and sustainability implications. Sustain. Chem. 1, 154–182 (2020).

    Article 

    Google Scholar 

  • Tabelin, C. B. et al. Copper and critical metals production from porphyry ores and e-wastes: a review of resource availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resour. Conserv. Recycl. 170, 105610 (2021).

    Article 
    CAS 

    Google Scholar 

  • Peng, P. & Park, A.-H. A. Supercritical CO2-induced alteration of a polymer–metal matrix and selective extraction of valuable metals from waste printed circuit boards. Green Chem. 22, 7080–7092 (2020).

    Article 
    CAS 

    Google Scholar 

  • Kaya, M. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes. Waste Manage. (Oxf.) 57, 64–90 (2016).

    Article 
    CAS 

    Google Scholar 

  • Wang, H. et al. Recovery of waste printed circuit boards through pyrometallurgical processing: a review. Resour. Conserv. Recycl. 126, 209–218 (2017).

    Article 

    Google Scholar 

  • Certified Electronics Recyclers (United States Environmental Protection Agency, accessed 24 February 2020); https://www.epa.gov/smm-electronics/certified-electronics-recyclers

  • Minerals Yearbook—Gold (USGS, 2021).

  • Priya, A. & Hait, S. Comprehensive characterization of printed circuit boards of various end-of-life electrical and electronic equipment for beneficiation investigation. Waste Manage. (Oxf.) 75, 103–123 (2018).

    Article 

    Google Scholar 

  • Chen, Y. et al. Selective recovery of precious metals through photocatalysis. Nat. Sustain. 4, 618–626 (2021).

    Article 

    Google Scholar 

  • Uekert, T., Pichler, C. M., Schubert, T. & Reisner, E. Solar-driven reforming of solid waste for a sustainable future. Nat. Sustain. 4, 383–391 (2021).

    Article 

    Google Scholar 

  • Işıldar, A., Rene, E. R., van Hullebusch, E. D. & Lens, P. N. L. Electronic waste as a secondary source of critical metals: management and recovery technologies. Resour. Conserv. Recycl. 135, 296–312 (2018).

    Article 

    Google Scholar 

  • Jones, R. S. & Fleischer, M. Gold in Minerals and the Composition of Native Gold 2330–5703 (US Department of the Interior, Geological Survey, 1969).

  • Riise, B. in Energy Technology 2020: Recycling, Carbon Dioxide Management, and Other Technologies (eds Chen, X. et al.) 295–305 (Springer Nature, 2020).

  • Heller, M. C., Mazor, M. H. & Keoleian, G. A. Plastics in the US: toward a material flow characterization of production, markets and end of life. Environ. Res. Lett. 15, 094034 (2020).

    Article 
    CAS 

    Google Scholar 

  • Chien, Y.-C., Paul Wang, H., Lin, K.-S., Huang, Y. J. & Yang, Y. W. Fate of bromine in pyrolysis of printed circuit board wastes. Chemosphere 40, 383–387 (2000).

    Article 
    CAS 

    Google Scholar 

  • Dushyantha, N. et al. The story of rare earth elements (REEs): occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geol. Rev. 122, 103521 (2020).

    Article 

    Google Scholar 

  • Godoy León, M. F., Matos, C. T., Georgitzikis, K., Mathieux, F. & Dewulf, J. Dewulf, J. Material system analysis: functional and nonfunctional cobalt in the EU, 2012–2016. J. Ind. Ecol. 26, 1277–1293 (2022).

    Article 

    Google Scholar 

  • January 2021 FastFacts Historical Sales Data (Consumer Technology Association, accessed 19 September 2021); https://shop.cta.tech/collections/research

  • Müller, E., Hilty, L. M., Widmer, R., Schluep, M. & Faulstich, M. Modeling metal stocks and flows: a review of dynamic material flow analysis methods. Environ. Sci. Technol. 48, 2102–2113 (2014).

    Article 

    Google Scholar 

  • Althaf, S., Babbitt, C. W. & Chen, R. Forecasting electronic waste flows for effective circular economy planning. Resour. Conserv. Recycl. 151, 104362 (2019).

    Article 

    Google Scholar 

  • Liu, X., Tanaka, M. & Matsui, Y. Generation amount prediction and material flow analysis of electronic waste: a case study in Beijing, China. Waste Manage. Res. 24, 434–445 (2006).

    Article 

    Google Scholar 

  • Gu, Y., Wu, Y., Xu, M., Mu, X. & Zuo, T. Waste electrical and electronic equipment (WEEE) recycling for a sustainable resource supply in the electronics industry in China. J. Clean. Prod. 127, 331–338 (2016).

    Article 

    Google Scholar 

  • Forti, V., Baldé, K. & Kuehr, R. E-waste Statistics: Guidelines on Classifications, Reporting and Indicators (United Nations Univ., 2018).

  • Harmonized System (HS) Codes (International Trade Administration, accessed 6 July 2021); https://www.trade.gov/harmonized-system-hs-codes#:~:text=The%20United%20States%20uses%20a,Census%20Bureau%27s%20Foreign%20Trade%20Division

  • Data (US Census Bureau, accessed 31 January 2021); https://www.census.gov/data.html

  • Active Mines and Mineral Processing Plants in the United States in 2003 (US Geological Survey, 2005).

  • Custom Data Package (Mining Data Online, accessed 24 February 2021); https://miningdataonline.com/property/list.aspx?vw=3

  • Sheaffer, K. N. Gold Data Sheet—Mineral Commodity Summaries 2020, 70–71 (USGS, 2020).

  • Find an R2 Certified Facility (Sustainable Electronics Recycling International, accessed 1 April 2021); https://sustainableelectronics.org/find-an-r2-certified-facility/

  • Smelter and Refiner List (Apple Inc., accessed 3 January 2021); https://www.apple.com/supplier-responsibility/pdf/Apple-Smelter-and-Refiner-List.pdf

  • List of the Smelters or Refiners Identified in Konica Minolta’s Supply Chain Which Were Known by RMI (as of March 31, 2020) (Konica Minolta, accessed 3 January 2021); https://www.konicaminolta.com/about/csr/csr/suppliers/pdf/smelters.pdf

  • Kasper, A. C. & Veit, H. M. Gold recovery from printed circuit boards of mobile phones scraps using a leaching solution alternative to cyanide. Braz. J. Chem. Eng. 35, 931–942 (2018).

    Article 
    CAS 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *