Robinson, B. H. E-waste: an assessment of global production and environmental impacts. Sci. Total Environ. 408, 183–191 (2009).
Google Scholar
Fiore, S., Ibanescu, D., Teodosiu, C. & Ronco, A. Improving waste electric and electronic equipment management at full-scale by using material flow analysis and life cycle assessment. Sci. Total Environ. 659, 928–939 (2019).
Google Scholar
Forti, V., Balde, C. P., Kuehr, R. & Bel, G. The Global E-waste Monitor 2020: Quantities, Flows and the Circular Economy Potential (United Nations University, 2020).
Advancing Sustainable Materials Management: 2014 Fact Sheet (USEPA, 2016).
Awasthi, A. K., Li, J., Koh, L. & Ogunseitan, O. A. Circular economy and electronic waste. Nat. Electron. 2, 86–89 (2019).
Google Scholar
Zabala, A. Illegal electronic waste recycling trends. Nat. Sustain. 2, 353–354 (2019).
Google Scholar
Hsu, E., Barmak, K., West, A. C. & Park, A.-H. A. Advancements in the treatment and processing of electronic waste with sustainability: a review of metal extraction and recovery technologies. Green Chem. 21, 919–936 (2019).
Google Scholar
Nithya, R., Sivasankari, C. & Thirunavukkarasu, A. Electronic waste generation, regulation and metal recovery: a review. Environ. Chem. Lett. 19, 1347–1368 (2021).
Google Scholar
Sun, R. et al. Bioaccumulation of short chain chlorinated paraffins in a typical freshwater food web contaminated by e-waste in South China: bioaccumulation factors, tissue distribution, and trophic transfer. Environ. Pollut. 222, 165–174 (2017).
Google Scholar
Kyere, V. N. et al. Contamination and health risk assessment of exposure to heavy metals in soils from informal e-waste recycling site in Ghana. Emerg. Sci. J. 2, 428–436 (2018).
Google Scholar
Purushothaman, M., Inamdar, M. G. & Muthunarayanan, V. Socio-economic impact of the e-waste pollution in India. Mater. Today Proc. 37, 280–283 (2021).
Google Scholar
Palmieri, R., Bonifazi, G. & Serranti, S. Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging. Waste Manage. (Oxf.) 34, 2120–2130 (2014).
Google Scholar
Ghodrat, M., Rhamdhani, M. A., Brooks, G., Masood, S. & Corder, G. Techno economic analysis of electronic waste processing through black copper smelting route. J. Clean. Prod. 126, 178–190 (2016).
Google Scholar
Diaz, L. A. & Lister, T. E. Economic evaluation of an electrochemical process for the recovery of metals from electronic waste. Waste Manage. (Oxf.) 74, 384–392 (2018).
Google Scholar
Patil, T. A. & Patil, S. T. Techno-economic feasibility of recycling e-waste to recover precious metals. Int. J. Adv. Sci. Tech. Res 7, 214–225 (2015).
Islam, M. T. & Huda, N. Material flow analysis (MFA) as a strategic tool in e-waste management: applications, trends and future directions. J. Environ. Manage. 244, 344–361 (2019).
Google Scholar
De Meester, S., Nachtergaele, P., Debaveye, S., Vos, P. & Dewulf, J. Using material flow analysis and life cycle assessment in decision support: a case study on WEEE valorization in Belgium. Resour. Conserv. Recycl. 142, 1–9 (2019).
Google Scholar
Islam, M. T. & Huda, N. E-waste in Australia: generation estimation and untapped material recovery and revenue potential. J. Clean. Prod. 237, 117787 (2019).
Google Scholar
Electronic Products Generation and Recycling in the United States, 2013 and 2014, Office of Resource Conservation and Recovery (USEPA, 2016).
Duan, H., Miller, T. R., Gregory, J., Kirchain, R. & Linnell, J. Quantitative Characterization of Domestic and Transboundary Flows of Used Electronics: Analysis of Generation, Collection, and Export in the United States (the StEP Initiative, 2013).
Althaf, S., Babbitt, C. W. & Chen, R. The evolution of consumer electronic waste in the United States. J. Ind. Ecol. 25, 693–706 (2021).
Google Scholar
Duman, G. M., Kongar, E. & Gupta, S. M. Estimation of electronic waste using optimized multivariate grey models. Waste Manage. (Oxf.) 95, 241–249 (2019).
Google Scholar
Golev, A., Corder, G. D. & Rhamdhani, M. A. Estimating flows and metal recovery values of waste printed circuit boards in Australian e-waste. Miner. Eng. 137, 171–176 (2019).
Google Scholar
Golev, A., Schmeda-Lopez, D. R., Smart, S. K., Corder, G. D. & McFarland, E. W. Where next on e-waste in Australia? Waste Manage. (Oxf.) 58, 348–358 (2016).
Google Scholar
Babbitt, C. W., Madaka, H., Althaf, S., Kasulaitis, B. & Ryen, E. G. Disassembly-based bill of materials data for consumer electronic products. Sci. Data 7, 251 (2020).
Google Scholar
Historical Population Change Data (1910–2020) (US Census Bureau, accessed 1 July 2021); https://www.census.gov/data/tables/time-series/dec/popchange-data-text.html
2020 RECS Survey Data (US Energy Information Administration, accessed 4 July 2022); https://www.eia.gov/consumption/residential/data/2020/
2018 CBECS Survey Data (US Energy Information Administration, accessed 1 July 2022); https://www.eia.gov/consumption/commercial/data/2018/index.php?view=microdata
Ghimire, H. & Ariya, P. A. E-wastes: bridging the knowledge gaps in global production budgets, composition, recycling and sustainability implications. Sustain. Chem. 1, 154–182 (2020).
Google Scholar
Tabelin, C. B. et al. Copper and critical metals production from porphyry ores and e-wastes: a review of resource availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resour. Conserv. Recycl. 170, 105610 (2021).
Google Scholar
Peng, P. & Park, A.-H. A. Supercritical CO2-induced alteration of a polymer–metal matrix and selective extraction of valuable metals from waste printed circuit boards. Green Chem. 22, 7080–7092 (2020).
Google Scholar
Kaya, M. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes. Waste Manage. (Oxf.) 57, 64–90 (2016).
Google Scholar
Wang, H. et al. Recovery of waste printed circuit boards through pyrometallurgical processing: a review. Resour. Conserv. Recycl. 126, 209–218 (2017).
Google Scholar
Certified Electronics Recyclers (United States Environmental Protection Agency, accessed 24 February 2020); https://www.epa.gov/smm-electronics/certified-electronics-recyclers
Minerals Yearbook—Gold (USGS, 2021).
Priya, A. & Hait, S. Comprehensive characterization of printed circuit boards of various end-of-life electrical and electronic equipment for beneficiation investigation. Waste Manage. (Oxf.) 75, 103–123 (2018).
Google Scholar
Chen, Y. et al. Selective recovery of precious metals through photocatalysis. Nat. Sustain. 4, 618–626 (2021).
Google Scholar
Uekert, T., Pichler, C. M., Schubert, T. & Reisner, E. Solar-driven reforming of solid waste for a sustainable future. Nat. Sustain. 4, 383–391 (2021).
Google Scholar
Işıldar, A., Rene, E. R., van Hullebusch, E. D. & Lens, P. N. L. Electronic waste as a secondary source of critical metals: management and recovery technologies. Resour. Conserv. Recycl. 135, 296–312 (2018).
Google Scholar
Jones, R. S. & Fleischer, M. Gold in Minerals and the Composition of Native Gold 2330–5703 (US Department of the Interior, Geological Survey, 1969).
Riise, B. in Energy Technology 2020: Recycling, Carbon Dioxide Management, and Other Technologies (eds Chen, X. et al.) 295–305 (Springer Nature, 2020).
Heller, M. C., Mazor, M. H. & Keoleian, G. A. Plastics in the US: toward a material flow characterization of production, markets and end of life. Environ. Res. Lett. 15, 094034 (2020).
Google Scholar
Chien, Y.-C., Paul Wang, H., Lin, K.-S., Huang, Y. J. & Yang, Y. W. Fate of bromine in pyrolysis of printed circuit board wastes. Chemosphere 40, 383–387 (2000).
Google Scholar
Dushyantha, N. et al. The story of rare earth elements (REEs): occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geol. Rev. 122, 103521 (2020).
Google Scholar
Godoy León, M. F., Matos, C. T., Georgitzikis, K., Mathieux, F. & Dewulf, J. Dewulf, J. Material system analysis: functional and nonfunctional cobalt in the EU, 2012–2016. J. Ind. Ecol. 26, 1277–1293 (2022).
Google Scholar
January 2021 FastFacts Historical Sales Data (Consumer Technology Association, accessed 19 September 2021); https://shop.cta.tech/collections/research
Müller, E., Hilty, L. M., Widmer, R., Schluep, M. & Faulstich, M. Modeling metal stocks and flows: a review of dynamic material flow analysis methods. Environ. Sci. Technol. 48, 2102–2113 (2014).
Google Scholar
Althaf, S., Babbitt, C. W. & Chen, R. Forecasting electronic waste flows for effective circular economy planning. Resour. Conserv. Recycl. 151, 104362 (2019).
Google Scholar
Liu, X., Tanaka, M. & Matsui, Y. Generation amount prediction and material flow analysis of electronic waste: a case study in Beijing, China. Waste Manage. Res. 24, 434–445 (2006).
Google Scholar
Gu, Y., Wu, Y., Xu, M., Mu, X. & Zuo, T. Waste electrical and electronic equipment (WEEE) recycling for a sustainable resource supply in the electronics industry in China. J. Clean. Prod. 127, 331–338 (2016).
Google Scholar
Forti, V., Baldé, K. & Kuehr, R. E-waste Statistics: Guidelines on Classifications, Reporting and Indicators (United Nations Univ., 2018).
Harmonized System (HS) Codes (International Trade Administration, accessed 6 July 2021); https://www.trade.gov/harmonized-system-hs-codes#:~:text=The%20United%20States%20uses%20a,Census%20Bureau%27s%20Foreign%20Trade%20Division
Data (US Census Bureau, accessed 31 January 2021); https://www.census.gov/data.html
Active Mines and Mineral Processing Plants in the United States in 2003 (US Geological Survey, 2005).
Custom Data Package (Mining Data Online, accessed 24 February 2021); https://miningdataonline.com/property/list.aspx?vw=3
Sheaffer, K. N. Gold Data Sheet—Mineral Commodity Summaries 2020, 70–71 (USGS, 2020).
Find an R2 Certified Facility (Sustainable Electronics Recycling International, accessed 1 April 2021); https://sustainableelectronics.org/find-an-r2-certified-facility/
Smelter and Refiner List (Apple Inc., accessed 3 January 2021); https://www.apple.com/supplier-responsibility/pdf/Apple-Smelter-and-Refiner-List.pdf
List of the Smelters or Refiners Identified in Konica Minolta’s Supply Chain Which Were Known by RMI (as of March 31, 2020) (Konica Minolta, accessed 3 January 2021); https://www.konicaminolta.com/about/csr/csr/suppliers/pdf/smelters.pdf
Kasper, A. C. & Veit, H. M. Gold recovery from printed circuit boards of mobile phones scraps using a leaching solution alternative to cyanide. Braz. J. Chem. Eng. 35, 931–942 (2018).
Google Scholar